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The particle-based lattice solid model developed to study the physics of rocks and
the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction
between particles. The model provides a means for studying the causes of seismic
wave attenuation, as well as frictional heat generation, fault zone evolution, and
localisation phenomena. A modified velocity—Verlat scheme that allows friction to
be precisely modelled is developed. This is a difficult computational problem given
that a discontinuity must be accurately simulated by the numerical approach (i.e., the
transition from static to dynamical frictional behaviour). This is achieved using a half
time step integration scheme. At each half time step, a nonlinear system is solved to
compute the static frictional forces and states of touching particle-pairs. Improved
efficiency is achieved by adaptively adjusting the time step increment, depending on
the particle velocities in the system. The total energy is calculated and verified to
remain constant to a high precision during simulations. Numerical experiments show
that the model can be applied to the study of earthquake dynamics, the stick—slip
instability, heat generation, and fault zone evolution. Such experiments may lead
to a conclusive resolution of the heat flow paradox and improved understanding of
earthquake precursory phenomena and dynamiesi1999 Academic Press
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INTRODUCTION

The “lattice solid model” (Mora [14]) consists of a lattice of interacting particles and we
motivated by short range molecular dynamics concepts. In the model, particles repre
grains of rock and interactions are specified accordingly. The model was developedin o
to study fracturing (Mora and Place [15]), wave propagation in complex discontinuc
media, faulting (Done’et al. [7]) and the stick—slip instability which is responsible for
earthquakes (Mora and Place [16]).

In the initial version, only elastic interactions in which particles of a model rock matri
were linked by elastic—brittle bonds were specified. Despite the simplicity of the inter:
tions, realistic stick—slip frictional behaviour was observed during numerical experime
involving two elastic—brittle blocks with rough surfaces being pushed past one another
constant rate. During the “stick” phase, the stress in the solid built up until two interloc
ing asperities of the fault pushed past one another, releasing some of the stress, initi
slip of the two blocks, and exciting a slip pulse which propagated along the fault. Duri
the propagation of the slip pulse, fault normal motions were observed. The results sl
that even using simple elastic interactions the model was capable of reproducing stick-
frictional behaviour and slip pulses compatible with those measured in field and labora
experiments.

A long standing paradox in earthquake studies has been the low heat flow obsel
around the San Andreas fault compared with the theoretical value computed using the v
of rock friction measured in laboratory experiments. To explain this paradox, Rituade
[3] proposed that slip occurs during the passage of interface waves which locally reduce
normal stress as they propagate along the fault. Numerical experiments (Mora and F
[16]) using the lattice solid model have demonstrated the existence of slip pulses v
particle motions normal to the fault, similar to those observed by Brune and co-work
[3] in stick—slip experiments involving foam rubber blocks. Early lattice solid simulation
did not model intrinsic friction between particles or heat generation so it was not possi
to determine whether the fault normal motions during the propagation of slip pulses w
sufficient to explain the heat flow paradox.

The lattice solid model was therefore extended to incorporate a simple intrinsic fricti
between particles and to simulate heat generation. Additional computations requirel
incorporate the effect of friction necessitated further refinement of the model.

In order to quantitatively study heat generation and to simulate frictional behavic
(including the transition between static and dynamical behaviour), frictional forces must
“accurately” computed and the discontinuity between static and dynamical behaviour n
be modelled. Heat is generated when two surfaces are slipping past one another (i.e
frictional behaviour is dynamic). When the surfaces are locked (i.e., the frictional behavi
is static) no heat should be generated. Hence, the model is based on the assumptiol
if two surfaces are locked by static friction, the slip velocity between these two surfac
is zero (measured as the slip velocity between surface particles). The transition betw
static and dynamic frictional behaviour is also an important consideration. Due to the ti
discretisation, only linear processes can be simulated within a finite time step, so one t:
discontinuities into account when going from one time step to the next. However, withii
time step discontinuities may occur and one must take them into account before procee
to the next time step. Ignoring these discontinuities (that is, assuming that they occur ¢
at the instant between two time steps) can yield incorrect frictional behaviour.
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In this paper, we develop an approach, the lattice solid approach, that seeks the <
frictional force such that no slip is allowed when two surfaces are locked by static frictic
The approach consists of solving a nonlinear system to compute the effective frictio
forces that must be applied during a time step. Frictional forces are computed such
the transition between static and dynamic behaviour is captured within a time step
introducing an intermediate state in which particles are bouncing (when the direction
the slip reverses but the slip does not stop), starting to slip, or stopping. The precision \
which the lattice solid approach computes static frictional forces, defined as the amour
slip between surface patrticles that are locked by static friction, is compared to the preci:
of two other methods. The first is based on a simple iterative method that attempt:
capture the transition between static and dynamic behaviour and was first used in studi
the effect of intrinsic friction on the dynamics of earthquakes (Mora and Place [17], Ple
and Mora [22]). The second method is based on the Distinct Element Model proposec
Cundall and Strack [6], which provides a simple and natural way to compute frictior
forces. Comparisons involve determining how closely energy remains constant during
simulation and calculating a heat error term that relates to the amount of slip obser
between particles locked by static friction.

LATTICE SOLID MODEL

The particles in the lattice solid model, like the particles in short range molecular dyna
ics, interact with each other. However, particles represent grains or units of rock that r
range from grain size to tens of metres in diameter. Particles are used as the building bl
of grains of rocks. The smallest indivisible unit of the system is specified by groupings
several strongly bonded particles. These groups can be considered as idealised unbree
grains or units of rock. This approach enables the nonlinear behaviour of discontinu
solids to be simulated with relative simplicity.

LATTICE STRUCTURE

On the scale of a laboratory experiment in which rock friction is studied, particles in t|
model represent grain-sized units of rock. Particles are arranged in a regular two dimensi
triangular lattice and linked by breakable bonds (Fig. 1). Although rocks are discontinuc
at many scales (e.g., rocks contain both micro- and macro-fractures and are made

FIG. 1. Closeup of a 2D close-packed lattice of bonded particles with a horizontal fault. The fault is specifi
as an irregularly shaped rupture in the lattice in which particles on the upper block are not bonded to particle
the lower block.
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grains with different chemical compositions), isotropic elasticity is a good approximati
for rock behaviour in the small strain macroscopic limit. In the macroscopic limit ar
assuming radial pairwise particle interactions, the triangular lattice solid structure has
elastic properties of an isotropic solid with a compressional wave sy8diines the shear
wave speed (Aki and Richards [1, p. 4]), very similar to that of typical crustal rocks. Tl
disadvantage of such a regular structure is that the fracture behaviour is anisotropic (I\
and Place [15]) and would be more comparable to that of a pure crystal. In order to en:
isotropic fracturing behaviour to be modelled more like that of rock, different particle siz
or a random lattice should be used (Chasal. [5]).

GRAINS AND PARTICLES

To enable isotropic fracturing and to obtain more realistic behavior at the smallest scall
the model, particles are grouped into “grains” of different sizes and shapes. Bonds, link
particles inside a grain, are set to be much stronger than bonds that link particles belon
to different grains (i.e., grains are made of material stronger than the overall strengtl
the material being modelled). Grains can be considered the smallest indivisible unit:
the system. Rotational dynamics is simulated at the grain scale as a consequence of |
momentum conservation of the bonded particles in a grain although it is not modelled at
particle scale. Furthermore, this kind of grouping of particles into grains allows isotroy
fracturing to be modelled. This is because grains can be made of a variable numbe
particles, and hence have different sizes and shapes.

Grains of rocks are deformed when subjected to a shear stress. These deformation
be modelled at the particle scale by introducing a “soft” shear constraint at the parti
scale (i.e., the particle has a shear elasticity). This approach has been developed by Ct
and co-workers [6] and introduces a shear stiffness at the particle scale. The shear stiff
should be chosen such that the elastic properties of a granular medium relative to tl
of an equivalent bonded system of grains remain unchanged (i.e., such that Poisson’s
o of the solid being modelled is ~1/3, as for real rocks). In our model, a “rigid” shear
constraintis used. Hence particles are rigid and cannot be deformed when subjected to
stress. By grouping particles to form grains, shear deformations can effectively take pl
because bonds inside a grain are stretched or compressed.

Because the smallest indivisible unit of the system is now composed of several pe
cles, this approach requires a large number of particles to simulate the same numb
grains of rock. Typically, 12& 128 particles are used, and, in order to have a sufficier
number of grains, the grains are composed of only a small number of particles (e.g.,
10 patrticles). Also typically, four different shapes of grains of model rock are used: elc
gated hexagon (composed of 10 particles), hexagon (7 particles), diamond (4 particles)
triangle (3 particles).

SIMPLE PARTICLE INTERACTIONS WITHOUT INTRINSIC FRICTION

Particles are bonded by linear elastic bonds that break when the separation exceeds a
threshold. This is expressed through a parabolic potential function that is radially depen
(Fig. 2, Eqg. (1)). When a given separatiopday) is reached, the bond breaks irreversibly.
When the bond is broken, particles are free to move apart and only the repulsive part o
interaction remains unchanged (i.e., the potential function becomes a half parabola).
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FIG. 2. Effective inter-particle potential. Bonded particles (dashed line) repel one another when the separa
is less than the equilibrium separatignand attract one another when the separation is greaterghanbonded
particles (dotted line) repel one another when the separation is less #yah do not interact when the separation
is greater tham,.

The potential function described above is specified as
Vo+ Lk(r —rg)?2, r<R
V() = { 2 1)
V(R), r >R,

wherek is the spring constant of the bond ands the equilibrium separation. The range
R where the potential becomes flat is given by

I breaks r(r) < rpeakforallz <t

R=R({t) = { 7))

ro, otherwise,
where the radial separatioris computed using

= TInm= [Xn — Xml, 3)
Vo = _%k(rbreak_ rO)Zv (4)

with x,, andxy, respectively denoting the positions of particland particlan andt denoting
the current time.

Different values for the breaking separatign.x are used to specify material with dif-
ferent strengths, with values typically ranging from1r, to 1.5r¢ (i.e., much higher than
the range of breaking criteria under dilation for macroscopic failure of rocks). A value
1.5rq is used to inhibit fracture and focus only on studying the effect of friction, elast
interaction, and fault geometry. A high value of the breaking separation is also usec
prevent grains from breaking down into single particles that may interact “unrealisticall
with other grains (single particles have an infinite shear stiffness, unlike grains of real rc
and are not allowed to rotate). Unbreakable material may also be used to prevent forme
of a fault gouge if, for instance, the goal of the simulation is to study only the effect
surface roughness and/or intrinsic friction.

The elastic force on particleis given by the sum of all pair forces

Fl =Y F2 5)

m#n
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The force on particle due to a particlen for a given spring constaiktis

—k(r —ro)e, r<R
ra={, TS ©
0, r> R,
where the unit vector pointing from partiake to particlen is
Xn — X
a, = n m . (7)

r

An artificial viscosity is added to damp the reflected waves from the rigid edges of t
lattice and to avoid buildup of kinetic energy in the closed system. The viscosity is frequel
independent and does not fundamentally alter the dynamics of the system if carefully chc
(Mora and Place [16]). The total force on partiolés

Fo=F\+F, (8)
where the viscous force is given by

Fr = —vXy. 9)

n

INTRINSIC FRICTION

Early simulations using the lattice solid model (without intrinsic friction) have show
that the model is capable of simulating the stick—slip instability and slip pulses. Howev
since heat generation was not modelled, questions such as Can the slip pulse locally re
the normal stress sufficiently to explain the anomalously low heat flow observed around
San Andreas fault? could not be answered. Heat in real solids relates to quantised le
vibrations (kinetic energy) at the microscopic scale. These lattice vibrations are gener
when microscopically rough surfaces slip past one another. Roughness at the microsc
scale (at the particle scale for the model) can be modelled using a “friction law.” Hence
incorporate an intrinsic friction at the particle scale to model heat generation. Heat is tl
defined as the work done by intrinsic friction.

When two grain surfaces are in contact and slipping past one another, a dynamic frictic
force opposes the direction of slip. The two surfaces stop slipping when the external fo
that cause the surfaces to slip no longer exceed the dynamic frictional forces. Then, the
surfaces are locked by static friction. We are interested in modelling frictional processe
faults, and we decided to be demanding with regard to modelling of static friction. Wh
two surfaces are locked by static friction, no slip is allowed between surfaces before
shear force overcomes the static friction. Frictional forces are applied at the surface par
centres and not at the surface of the surface particles where the contact actually occurs
effectively means that frictional forces exert slightly less torque than they should, mak
it harder to rotate grains). Slip velocity between grain surfaces is computed as the
velocity between the centres of mass of surface particles that are in contact. Three diffe
approaches for modelling this kind of frictional interaction will be discussed in the ne
section.

A simple intrinsic friction corresponding to Coulomb friction is added to the model whe
two surface particles that are not bonded come in contact (i.e., repel one another). For a
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intrinsic frictional coefficienfu, a tangential acceleratim‘j‘ due to the dynamic frictional
force between the particlésand j is computed, and its direction is opposite that of the
tangential movement between particles. If the tangential acceleration required to stop
between particles after one time step is greater than the dynamic accelaﬁaﬁben the
two particles are allowed to slip and the acceleration due to the dynamic frictional for
(M ay‘j’) is applied. Otherwise, particles are locked by a static frictional force which is low
than the dynamic frictional force and must be determined.

The dynamic frictional acceleration used here is velocity independent and is proportio
to the normal force (stress) between particles, namely

k o — I’ij

4= p— 10
alj MM ro ’ ( )

whereM is the particle mass. The total acceleration of partictesulting from all elastic
and frictional interactions is given by

% (1) =01 + ) %), (11)

leR

whereP, denotes the set of unbonded particles interacting with paitikfgis the effective
frictional acceleration for particle-pailr due to the dynamic or static frictional force, and
x°(t) denotes the value of the acceleration before the frictional acceleration is added. -
elastic acceleration is given by

0r _ Fn®
) = g (12)

The tangential velocit)'(} and acceleratioﬁg of a particle-paiij are computed relative
to the midpoint of the particle-pair and are respectively given by

Xi (1) = (% (1) — X} (1) - €] , (13)
and
% (1) = (i (1) =% () - e, (14)

where particle velocitiegx;) are updated using a modified velocity—\Verlat scheme, de

scribed in the next section. The tangential unit vector of particIeraienotechT, is given

by

o = = 8)e (15)
[Xj — (Xij - & )& |

with x; defined as
Xij = X — X;j. (16)

Before one computes the effective frictional acceleratidn) (n Eq. (11), the numerical
integration (to compute particle velocities and positions) must be cast in such a way
one can compute the frictional forces that take into account discontinuities that may oc
during a time step (i.e., bond breaking yields a discontinuity in force), as does the transi
between dynamic and static frictional behaviour.
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HALF TIME STEP INTEGRATION

The numerical integration is based on a velocity—\Verlat scheme (Allen and Tildesley |
given by

. At?
Xn(t + At) = Xp(t) + AtXn (1) + 7xn(t), an

Kn () 4+ Xn(t + AL)
> ,

where the velocity is updated using the value of the acceleration at the middle of the time
(computed by averaging the accelerations at the beginning and end of the time step).
velocity—\Verlat scheme assumes that accelerations are continuous during a time step.
to bond breaking, a discontinuity may occur during the time step. Bonds are forced to br
exactly at time, when the displacements are computed, in order to capture the discontint
precisely. Therefore, the elastic force changes at timié&ond breaking has occurred. In
other words, the elastic acceleratios$)(att — e (denoted ) andt + ¢ (denoted ) are
different. As the static frictional forces depend on all other forces acting on patrticles, t
discontinuity in elastic forces includes a discontinuity in frictional forces. Hence, differe
elastic and frictional forces must be applied ate andt + €. This is achieved using a half
time step integration approach in which the time step is centrédrorcing bond breaking
to occur at time in the model (i.e., the middle of the time step) allows the effect of delayin
the fracture as a result of the time discretisation to be minimised. With a full time st
integration, bonds will be broken at+ % just before one proceeds to the next time ster
Hence, the interactions would have been computed as if the bond were unbroken. There
the half time step integration allows the discontinuity to be captured more precisely with
using a smaller time step interval.

A full time step goes front — % tot+ %, where the particle positions are updated at
and particle accelerations are computetiaandt™. The particle positions and velocities
are consequently updated using

Xn(t + At) = Xn(t) + At (18)

. A2
Xn(t 4+ At) = Xp (1) + AtX,(0) + TX”(t ), (29)

Xn(tT) + X (1~ + At)

Xn(t + At) = Xq(t) + At 5 (20)
We can write the updating of velocities as
o (t + %) = a0 + 3 Knlth), (21)
Xn(t + At) = Xq (t + %) + %Xn(t_ + At), (22)
or equivalently,
alt) = % (t - %) + (), (23)

. A At
Xn (t + 2> = Xn(t) + > Xn(t), (24)
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whereX, (t) andX,(t*) are the particle accelerations before and after bond breaking. V
express these two steps using a single equation as

Xn(T + AT) = Xn (1) + AtXn(T), (25)
whereAt = 4! and
tt T =
={ (26)
{t , T=1t-— %.

The forces due to the viscosity are computed at timdaen the velocity is known.

VISCOSITY

The half time step velocity—Verlat scheme requires the values of the particle accelerat
att™ in order to update the particle velocities at titmef. Eq. (23)). The accelerations are
computed from the frictional forces, elastic forces, and viscous forces (Eqgs. (11), (12),
(8)). The viscous forces are computed using Eq. (9), which requires the values of the par
velocities. To summarise, in order to update the particle velocities atttiie viscous
forces at timet must be computed, but these require the values of particle velocities
timet. Consequently, the forces due to the artificial viscosity are computed using an itera
algorithm. Table | specifies the algorithm used when elastic and viscous forces only
modelled. Incorporation of artificial viscosity during modelling of frictional forces will be
discussed in the next section.

COMPUTATION OF FRICTIONAL FORCES

Before describing our numerical approach, we will consider two simple methods
computing frictional forces. The purpose of the frist one is to compute a value for t
frictional force that precisely stops slip between particles in static frictional contact; t
second method is based on the Distinct Element Model proposed by Cundall and co-wor
[6, 8]. A detailed comparison between our approach and the two methods is shown in
Appendix.

TABLE |
Computation of Viscous Forces

do for all particles n
FL(t) = —vXa(t)
(7)) = & (FLE) +Fa)
Xn(t) =%a(t = 1) + 3X0(t7)
until converged

Note.The elastic forces are computed at e
(denoted~] (t~)) before bonds are broken.
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A SIMPLE APPROACH

The following approach is based on the assumption that one can isolate and solve
frictional interaction between two particles without considering frictional interactions wil
other particles. Once elastic and viscous forces acting on each particle are known,
frictional forces are applied. This is done assuming that there will be no change in extel
forces (that s, all forces including frictional forces that act on a particle) while the friction
forces are applied. As the other frictional forces acting on a given particle do change
external force acting on it, iterations are needed. The “simple” iterative method cons
of computing the “static” acceleration required to stop slip between particles during a f
time stepAt = %. The tangential velocity (given by Egs. (25) and (13)) at the end of tt
half time step will be

Xj (T 4+ A7) = X (1) + At (@i (T) + % (T)) - g , (27)
where the effective total acceleration due to all forces, excluding the frictional force on [
ij, is

@ (T) =X)(T)+ > X (T). (28)
IR I#]

Therefore, the static frictional acceleratiafi(T) that should be applied to stop slip
between particlé and particlej during a half time step interval t is calculated by setting
X{ (t + At) =0 and%f (T) =a3(T)e in Eq. (27), yielding

Xj (1)
AT

a(T) = — (@i (T) - €] - (29)

The effective frictional acceleratioﬁtijF) is computed as the minimum of the static and
dynamic acceleration using

i (T) = aj (Tey, (30)
and
i@ g s d
——— M, [aM™]>]aT)
O O A AR ] o
a,-?(T), otherwise

whereaijF denotes the magnitude of the effective or applied frictional acceleration. T
applied frictional accelerations are computed by iterating Egs. (29) and (31), starting fr
aﬂF =0, until convergence is achieved (no further chang,tfiwithin a specified precision).
Unfortunately, this method is not stable because this approach assumes that forces &
on a particle Mae,) will not change while the frictional forces are applied. When the
frictional forces are applied to a particle the forces acting on all particles that are in
contact with this particle change. Since these changes in forces are not considered
algorithm cannot “exactly” stop slip between particles locked by static friction. This resu
in oscillation between the dynamic and static states when the values of static frictic
forces are close to the dynamic value. Hence, the transition between dynamic and s
behaviour is not accurately modelled. Instabilities are manifested as oscillations during
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iterative procedure of particle-pairs between static and dynamic states (cf. the Appenc
When complex interactions are involved, the oscillations of particle-pair states result
non-convergence of the iterative algorithm.

CUNDALL APPROACH

In the lattice solid model, particles have a radial intrinsic elasticity that results in a norn
elastic force between interacting particles. Hence, a “normal stiffness” is introduced at
particle scale and shear stiffness of a system of particles is a consequence of the geon
arrangement of the triangular lattice. The triangular lattice has a shear mdd:ulegk
(Mora and Place [16]). The numerical approach proposed by P. A. Cundall applies
same principle to shear forces at the particle scale in a granular medium interacting thrc
friction. In his model, two unbonded particles undergo elastic shear restoring forces u
these exceed agiven threshdwai‘j’) andthe particles are allowed to slip. Therefore, a“shes
stiffness” is effectively introduced at the particle scale that may modify the macrosco
elastic properties of a given structure. In contrast, unbonded particles in static frictio
contact in the simple iterative approach described previously would be seen as havin
infinite shear stiffness.

The “shear stiffness” introduced at the particle scale can be seen as the shear deform
occurring when two particles are locked by static friction. When the surfaces of two partic
are locked, the particles can be deformed, and hence slip will occur if this is measure
the displacement between the two particle centres. The use of the “soft” shear constrait
particles introduces an error due to the time discretisation: frictional forces are compt
from the particle displacement since the last time step. During the next time step,
frictional forces applied may be too large or too small for the given time step increment &
may result in a change in the particle frictional behaviour (going from static to dynar
frictional behaviour, for instance). Thus, transitions between static and dynamic frictiol
behaviour may be delayed by up to a time step and transition between static and dyn:
states can incorrectly occur. In the Cundall approach, frictional forces also include
restoring shear forces due to the particle elasticity. The fact that the frictional force does
oppose the direction of slip is not indicative of an error in that case. However, change:
frictional behaviour may occur when one restores forces due to the particle shear elast
changes (caused by overestimating or underestimating the frictional forces during at
step) while the frictional force at the particle surface should remain static or dynamic. Her
the ability to capture the frictional discontinuity (changes between the static and dynai
states) depends on the time step increment. In contrast, use of a “rigid” shear constrain
the lattice solid approach allows the frictional behaviour within a time step to be captul
more precisely. Hence we choose to use a “rigid” shear constraint at the particle scale
comparing the lattice solid approach and the “Cundall approach,” this will require use
infinite shear stiffness in Cundall’s method.

The resulting shear force in Cundall’'s method is computed by accumulating variatic
in shear forces using

F3(T + A1) = F(T) + AR (T), (32)
where

AFS(T) = —KsAUS(T) (33)
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and
AU (T) = Atx{ (1) g, (34)

andKg denotes the joint stiffness (stress/displacement). The frictional acceleration is c
puted from the shear force and is given by

X5 (T) =af (T)ey, (35)
where
AM | g s d
F (T, 2(T)| > |85 (T)
arT) - o)A [FM]= (M) -
ai?(T), otherwise
and
1
(M) = F(M - q. (37)

This approach provides a stable, simple, and efficient way to compute the frictiol
forces. To accurately simulate (under the given assumptions of our current model) si
frictional behaviour, slip between the surface particles of grains must be exactly stop
when the contact is static. The joint stiffnd€sin the Cundall approach introduces a “soft”
shear constraint. To exactly stop slip between particles when the contact is static, the <
constraint must be rigid, and hence the joint stiffn&ssmust be infinite. As a result,
(cf. the Appendix) the transition between static and dynamic behaviour is not precis
captured using a finite time step and a joint stiffn&ssranging from 1 to 50 times.
This is manifested as slip between supposedly static particles. As explained previot
the use of a “soft” shear constraint causes the frictional forces to be underestimate
overestimated, thereby resulting in the possibility of incorrect transitions between static.
dynamic frictional behaviour. The lower the joint stiffness, the higher the underestimate
overestimate of the frictional force. To capture the frictional discontinuity more precisely
large value oKs must be used (i.e., particles are given greater shear rigidity). However,
ensure numerical stability and accuracy, the time step increment must be chosen suct

[ M
AT < 2C Z—KS, (38)

wherec is a user-defined factor (typicallg,= 0.1, depending on the number of contacts
that a particle can have simultaneously). Therefore a very small time step increment r
be used to obtain a precise computation of frictional forces such that slip between st
pairs is stopped, which results in excessively costly calculations.

A PRECISE NUMERICAL APPROACH (LATTICE SOLID APPROACH)

The computation of the frictional forces using the lattice solid approach consists
accurately modelling discontinuities in the frictional behaviour (i.e., transition betwe
static and dynamic frictional behaviour) and solving for frictional forces by simultaneous
considering all interactions between particle-pairs. Slip between patrticles is stoppe
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particles are “static.” As in the iterative method described previously, this implies tf
particles in static frictional contact have an infinite shear rigidity. In order to obtain elas
behaviour similar to that of rocks, particles are grouped to form grains which represent
smallest indivisible unit of the system. Hence grains in the model can be deformed wi
subjected to shear or normal stress similarly to grains of rock. Slip between surface parti
that are in contact are “exactly” stopped (the slip velocity between the particle centre
zero) if the frictional behaviour is static.

Because of our interest in precisely simulating static frictional behaviour in the propos
model, shear interactions of surface particles (prior to slip) are rigid, while normal intere
tions are “soft.” Since patrticles are always bonded with at least two other particles to fc
a piece of model material or grain (i.e., the smallest grain is roughly triangular shape
what would have been seen as “rigid” shear interactions if one were at a particle sc
will actually be a “soft” interaction between grains (as a consequence of the imposition
elastic shear resistance by the lattice geometry as the grains distort). In other words, <
interactions between grains of model rock are “soft” not by definition at the particle sc:
but as an emergent property.

This model therefore provides an approach more precise (under the given assump
of our current model) than the approaches of the two methods outlined previously (itera
and Cundall approaches).

MODELLING FRICTIONAL DISCONTINUITIES

A particle-pair is “static” when the tangential velocity is zero; otherwise the particle-pe
is “dynamic.” Due to the time discretisation, particles may undergo a transition betwe
static and dynamic behavior during a time intervat. Therefore three more states are
distinguished (Fig. 3). The first two states are “stopping,” where particle-pairs are chang

T Al o,
r (a,y) i e,f AP (aex)ij -€; At
(aex)ij € ATfrmmmmmremnee _x’TJ'
T
Xy ™ | —— . — -
" AT AF T AT ¥
af el At Ay AT e AF T At
ay . AT
Static Dynamic Starting
T
X
(@), T AT [
Tl N T
Xi; i .
’ > AF oT : A
At a;.e; Ao
F T
a;.e; AT |--------- ! T
v (ae,()ij € AT oo
Stopping Bouncing

FIG. 3. Theoretical dynamics of the five different particle-pair states, Whﬁamanotes the relative tangential
velocity between the particlésand j, éﬁ denotes the theoretical frictional acceleration, gagjj denotes the
external accelerations due to all forces excluding this frictional force. The theoretical accelerations are thos
the true dynamics corresponding to the five states that must be modelled.



THE LATTICE SOLID MODEL: INCORPORATION OF FRICTION 345
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FIG. 4. Dynamics of stopping particle-pairs, whe’r? denotes the relative tangential velocity between the
particlesi and j, éﬁ denotes the actual or theoretical frictional acceleration, @agjj denotes the external
accelerations due to all forces except this frictional foft{feShown are actual or desired dynamics (left) and
effective dynamics (right) that yield an equivalent configuration (velocity) to the true dynamics at the end of
half time step.

from dynamic to static, and “starting,” where particle-pairs are changing from static
dynamic. The last state concerns dynamic particle-pairs with a tangential velocity t
changes in sign during the time intenvak (the slip between the two particles does not
stop but the tangential velocity is zero at some instant during the half time step). These
termed “bouncing” particle-pairs.

The time discretisation requires that all applied or “effective” forces be constant duri
a time intervalAt: when the velocity from the acceleration is updated using the modifie
velocity—Verlat scheme (Eq. (22)), the velocity obtained for the half time step is the o
obtained for a constant acceleration. Thus, we seek the effective frictional accele‘kétion:
which yield the same dynamics (i.e., final velocity) as the theoretical frictional accelerat
é\ijF depicted in Fig. 3. For static particle-pairs, the frictional force is constant and equ
the force required to maintain the particle-pair static during the half time step and he
x”F = —(aejj. Dynamic and starting particle-pairs have (by definition) a constant friction
acceleration equal to the dynamic frictional accelera(iigh. Hence, the magnitude of the
effective frictional acceleration for dynamic and starting particle-paififis= |&] | =af.
Stopping particle-pairs are static exactly at the end of the half time step, which is achie
by applying an effective frictional force equal to the force required to stop slip betwe
the particles at the end of the time intenaat (Fig. 4). This effective frictional force,
which depends oliaey)jj and the tangential velocity at the start of the time interval, mus
be determined.

For bouncing particle-pairs, the effective frictional force is the weighted average of forc
which should be applied before and after the tangential velocity passes through zero (Fic

TA Actual Dynamics ; y Effective Dynamics
xij xij
- T -
A X;..e. AT T >
a T i oty A
af el At T
9
At
¢V T AT feveseroescereemensaceaces
(aex)ij ~eg' AT‘ (aex)ij .eij AT v

FIG. 5. Dynamics of bouncing particle-pairs, Whe‘rﬁ: denotes the relative tangential velocity between the
particlesi and j, éi? denotes the actual or theoretical frictional acceleration, @agjj denotes the external
accelerations due to all forces except this frictional force. Shown are actual or desired dynamics (left) and effe
dynamics (right) thatyield an equivalent configuration (velocity) to the true dynamics at the end of the halftime s
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thus yielding the same final velocity that would result from application of the true friction.
force,
XT(r 4+ A1) = XT(1) + AT (X (T) + (@i (T)) - €

A
F(T)+ ri% (T + A7) + (3edi (T)) .,

(39)

=Xx"(7) + At Aty
N A

whereT is given by Eq. (26)7 + At’ is the instant when the tangential velocity reache:
zero, ancﬁijF (T) andéy-jF (T + At’) are respectively the true frictional forces that must be
applied before and after the tangential velocity passes through zero. The effective frictic
acceleration for bouncing particle-pairs is consequently given by

KM= S8 M+ ST ), (40)

From the above, it is evident that effective frictional accelerations for static, stoppir
and bouncing particle-pairs depend on the frictional accelerations of other @aiyg)((
Hence, the effective frictional accelerations must be computed simultaneously. The effec
frictional accelerations of static and stopping particle-pairs are defined as the accelerat
required for the tangential velocity at+ At to reach zero. This definition of static pairs
allows them to be treated identically to stopping particle-pairs and avoids the possibi
that the tangential velocities will drift from zero due to numerical roundoff error acct
mulation. Therefore, if bouncing particles could be ignored, frictional forces for stati
stopping, dynamic, and starting particle-pairs would be computed simultaneously by
plying the dynamic frictional acceleratic(ai‘j’) for starting and dynamic particle-pairs and
then computing the frictional accelerations for static and starting particle-pairs such the

X (t + A1) = 0. (41)

In order to treat bouncing particle-pairs simultaneously with the other particle-pairs,
definetr + A1’ as the instant when the tangential velocity reaches zero. The effective fr
tional force for bouncing particle-pairs is computed frama’, the dynamic acceleration,
and the initial velocity (Fig. 5). Therefore, the frictional acceleration for bouncing particl
pairs is defined as the acceleration required for the tangential veloaity @tz’ to reach
zero. For static and stopping particles we Aet = Az. Hence, the frictional forces of all
particle-pairs are computed simultaneously by defining the effective frictional accelerat
as the acceleration required for the tangential velocity-atAt’ to reach zero, namely

X (r + AT)) = 0. (42)

In order to solve Eq. (42), the value aft’ for bouncing particle-pairs must be obtained.
This value is computed such that the modified velocity—Verlat scheme using a half ti
step integration (Eq. (25)) is verified. The particle velocity, given by

%\ (T + AT) = % (7) + At (e (T) + X (T)]. (43)

equals the velocity that would have been computed at the next half time step using
“exact” equations in which the frictional forces fromto r + A1’ (denotedéﬂF (T)) and
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fromr + At/ to T + At (denotedé\ijF (T + At")) are equal in magnitude and opposite in
sign:

%i (T 4+ AT') = % (1) + AT [(@e0y (T) + & (T)], (44)
Xi (T 4+ AT) = X (T + AT) + (AT — AT) (@0 (T + AT) + &5 (T + A7), (45)
where(agy)ij is defined by Eq. (28) and is given by
(@e0ij (T) = (8e)ij (T + AT'). (46)
The exact or theoretical frictional for@ is given by
X (1)
% @)

From the previous equations, the valuefaf’ relates to‘(ijF andé\ijF through

L, AT ()M
av=ag =57 (ﬁ + 1). (48)

& (T) = —& (T + A1) = — al(Te]. (47)

NONLINEAR SYSTEM TO COMPUTE EFFECTIVE FRICTIONAL ACCELERATION

For a given particle-pair state, the effective frictional acceleration of the dynamic a
starting particle-pairs is equal to the dynamic acceleraifjb(r;omputed using Eq. (10)),
which opposes the tangential velocity. The effective frictional accelerations for the sta
stopping, and bouncing pairs must be computed by solving these accelerations suct
Eq. (42) is verified. Since the directions of the frictional accelerations are known for the
pairs, only the magnitudes; must be computed. Using Egs. (11), (13), and (20), one me
write Eq. (42) as a nonlinear system involving all stopping, static, and bouncing partic
pairsij, namely

@) = | xj(r+At) | = |0, (49)
where
= & |, (50)
and
Xj (t + A7) = X (1) + At'a] (T), (51)
al (T)=ad(T)+ > X (T)-ef =Y x5 (T) ¢, (52)
leP leP;

a(T) = (% (T) —5Q(T)) - ¢ (53)
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with the expressiom\t’ given by Eq. (48). This quadratic system can be solved using
Newton algorithm by iteratively solving the equation

@)n = (@)n-1 = (VOn-1)"‘tn-1, (54)
which can be written using the forAx +b =0 as
Von-1 X @)n+b=0, (55)
where
b=0an1—Van1x@)n1, (56)

and(a®), denotes the frictional acceleration of all stopping, starting, and bouncing partic
pairs at thenth iteration of the Newton algorithm, amy is equal toq((@%),) (i.e., the value
of g at thenth iteration). The derivative af,,_; is given by

a0

an—l = 3a1lF-n , (57)
where, from Eq. (51),
a0 INT dal  ax!
N A
8a{m aa'Im 3a|m 8a|m
AT’ darl
= sr aijT + AT % ) (58)
CET day,
and by Eq. (52),
m & | =i
g | 59
bay, | Gm & 1= (59)
0, otherwise
and
IAT' 0, state= static or stopping
9a, - ﬁ, state= bouncing (60)
J j

from the expression oAz’ given by Eq. (48). The initial value ad®, denoted(a®)o, is

set to the static frictional acceleration computed for the previous time step. In order
computeVg,_1 and proceed to the next iteration of the Newton algorithm (cf. Table I1), th
values ofaf, A7/, andaﬂ-T must be updated. Therefore, the effective frictional acceleratic
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TABLE Il
Computation of the Effective Frictional Accelerations for a Given
Fixed State and Viscous Forces

Set particle-pair state to the last computed state
Set frictional accelerations to the last computed frictional accelerations

do

Apply the effective frictional forces (Eq. (11))

Update the tangential velocitiei%(r + A1) (Egs. (25) and (13))
ComputerAt’ (Eq. (48))

Update the tangential velocitiei%(r + At1') (Egs. (44) and (13))
Compute the effective tangential acceleratiafj“ls{Eq. (62))
ComputeVa,_; (Eq. (57))

Proceed to the next iteration of the Newton algorithm
Compute the frictional acceleratio(ﬂfj) by solving the linear system (55)
Compute the effective frictional accelerations (Eq. (61))

until converged

x”F is updated according to new estimationsagffor all static, stopping, and bouncing
particle-pairs:

%F =

ij (61)

a - qJT, state= static, stopping, or bouncing
unchanged  state=dynamic or starting

The values oﬁijF and At’ are subsequently updated by respectively using Egs. (47) a
(48). Finally, the tangential velocities at+ A1’ (X{(r + At’)) must be recomputed using
Egs. (44) and (13) in order to upda;;% using

X[ (r+ AT) — %{ (1)
/. AT’ ’

T (62)

which can be deduced from Eq. (51).

The iterative Newton algorithm is specified in Table 11, where computation of the effecti
friction forces is shown. The convergence criterion is based on the error of the slip velo
for static and bouncing particle-pairsat Az, which should be zero. Namely, convergence
is achieved if

Xg(r + AT) < €, (63)

wherees is chosen according to the specific computer’s numerical precision (typica
es=10"8in double precision).

Particle-pair states are set before the Newton algorithm shown in Table Il is perform
and they remain unchanged until the algorithm converges. Therefore the resulting effec
frictional acceleration may not be consistent with that of the particle-pair states. Forinstal
the frictional acceleration required to stop slip between two particles may be so great
the particle-pair state should be dynamic rather than static. Hence, the particle-pair s
must also be updated in accordance with the computed valtﬁs of
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PARTICLE-PAIRS STATE ITERATIVE PROCEDURE

The states of particle-pairs are determined from the frictional acceleratjomsd the
tangential velocities. Particle-pair states are determined using
static X{(r) =0& & < aut
starting x{(t) =0& & > au
State= { stopping X (t) #08& & < acu (64)
dynamic X (0)X] (r + A7) > 0& & > acu

bouncing X (D)X{ (r + A1) < 0 & & > acu,

where ag; is such that the frictional acceleration never exceeds the dynamic frictior
acceleration (i.e4f - ef <af). From Eq. (40) the value @ is given by

2A
( AZ" — 1) a” , last computed state bouncing

Acut = (acut)ij = (65)

aﬂ , otherwise

Particle-pair tangential velocities at+ At (x (r + At)) are updated using Eq. (25).
The effective frictional acceleranorf is computed using

aﬂse{, state= static or stopping
XuF = ai?e”T, state= starting or dynamic (66)
(2t )alel,  state=bouncing

The effective frictional accelerations are consequently modified after the particle-pair stz
have been updated. Hence, frictional interactions have changed and the effective fricti
forces must be recomputed. This is achieved using an iterative procedure (Table IIl) wt
recomputes the frictional forces and updates the particle states until there is no further ch
in the particle-pair states, the effective frictional accelerations have converged within sc
tolerance, and Eq. (63) is verified.

The initial particle-pair states and the frictional accelerations are respectively set to
states and the frictional accelerations computed at the previous time step for particle-|

TABLE 11l
Computation of the Effective Frictional Acceleration

Set the particle-pair state to the state computed at the previous time step
Set the frictional acceleration to the values computed at the previous time step

do
Update of the effective frictional accelerations (Table Il kernel)
Apply effective frictional force (Eq. (11))
Update tangential veIocitie'qu(r + A7) (Egs. (25) and (13))
Update particle-pair states (Eq. (64))
Update effective frictional accelerations (Eq. (66))

until converged
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TABLE IV
Computation of Forces due to Friction and Viscosity
on Unbonded Touching Particles

do for all particles n in frictional interaction
Fat) = —vXa (1)
a(t7) = 5 (Fyt) + F(0)
Update effective frictional accelerations (Table Il kernel)
Xa(t7) = X0(17) + ZIEPHXEI )
Xn(t) = Xn(t — &) 4+ § % (1)
until converged

remaining in contact. For particles coming into contact, the state is set to “dynamic” &
the frictional acceleration is set H{f (N.B. The choice of the initial state affects only the
rate of convergence of the algorithm.) Non-convergence can occur when the mgtrix
becomes numerically irregular. In that case, frictional forces may be incorrect. When n
convergence occurs, the frictional forces are corrected such that their direction is oppc
the direction of slip and they do not exceed the dynamic frictional force. Non-convergel
occurs only under a specific arrangement of particles, where, in the worst case, we |
observed that one non-convergence occurs every 100,000 time steps and affects les:
0.1% of the particles in frictional contact.

VISCOSITY

For the half time step from =t — % tot (i.e., T =t7), the viscous forces depend on
the velocity at the end of the half time step. Hence, the viscous forces must be recomp
using the new values of particle velocities at time- At. Since the acceleration{8ey);
are modified if the viscous forces change, the effective frictional accelerations must ¢
be updated. This is achieved using an iterative algorithm (Table 1V) in which forces due
the viscosity are added after the frictional forces are applied, and the nonlinear syste
subsequently recomputed.

The algorithm shown in Table IV simultaneously iterates the effective friction, particls
pair state, and viscous force, allowing the Newton algorithm for effective friction to conver
at the same time that particle-pair state and viscosity are updated.

GLOBAL NUMERICAL INTEGRATION

Table V specifies the global algorithm using the half time step integration scheme. T
elastic interactiongF/ (t)) are first computed using Eq. (6). Once particle acceleratior
and velocities are updated, viscous forces are incorporated (Table I). The first half time -
(fromt — % tot™) ends with the computation of the effective frictional forces (specified b
Table V), where the viscous forces are updated for the particles in frictional interaction.
the second half time step, links are broken for bonded particle-pairs which have a separ:
rij greater thamyeax (links are forced to break atwith F! (t~) denoting the elastic force
computed before the bond is broken aﬂpjt*), the elastic force after the bond is broken).
Frictional accelerations are recomputed and, finally, particle velocities and positions
updated using the modified velocity—\Verlat scheme.
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TABLE V
Computation of the Two Half Time Steps

First half time step (compute, (t) andX,(t™) givenx,(t) andx,(t — %))

Update accelerations and velocities:

X(t) = +FL(tD)

Xa() =Ko (t — &) + 45,(t0)

Incorporate viscous forces for bonded patrticles (Table I)

Incorporate frictional and viscous forces for unbonded particles (Table 1V)

Second half time step (computg(t + %), Xa(tT), andx, (t + At) givenx,(t) andx,(t))
Break bonds (computg, (t*) andx! (t7))

Incorporate frictional forces:

Xt = 5 (Fath) + Fr()

Incorporate frictional forces for unbonded particles (Table I11)

Xn(17) = XY 4+ 3 p X0 (1)

Update particle velocities and positions:

Xt + AL = Xo(1) + At (D) + A % (1)

Xn(t + %) = Xn(t) + %xn(fr)

The precision factor for the numerical integration is given by

€ = VimaxAt ’ (67)
fo

whereVmax is the maximum velocity in the system, which is approximately equal to 1 (tr
P-wave speed) ifp =1, k=1, andM =1 (Mora and Place [16]). In this cagex At. The
choice ofe can be used to control the precision of the numerical results. Typiealy).2
must be chosen to obtain results with adequate precision.

ENERGY CONSERVATION

The total energy of the system is computed as the sum of the kinetic energy, poter
energy, fracture energy, heat, and applied work done. The conservation of energy prov
a check of the numerical integration approach and implementation and is indicative onl
the total energy is not constant, in which case an error or imprecision must exist. As \
the case for the numerical integration scheme summarised in Table V, the computatio
energy by a half time step integration scheme improves the numerical precision.

The kinetic energy, potential energy, and fracture energy (which is the energy lost wi
a bond is broken) are respectively given by

Exe(t) = E; %an(t)ﬁ (68)
Ep(t) = ZT %k(ru (t) —ro)%, (69)
ije
and
Es (t - A2t> = Ej (t — A;) > %1|<(rij (t) —ro)%. (70)

ijeB
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The factor is;l1 above rather thaé because the sum is over two interactions: pariide
particle j and particlej on particlei. The kinetic energy lost due to the artificial viscosity
(E,), computed from

E,(t) = — /ZF Xn dt, (71)

neA
is given by
E.(t) = E, ( ) +Z L i O a () (72)
neA
At\ At . At
E, <t+ 7) = B0+ S va®lfa() + 5 %n(th)|. (73)

neA

The total kinetic energy generated is computed as the sum of the kinetic €bggyand
the kinetic energy lost due to the artificial viscos(fy,) and is given by

Ek = Exe+ E,. (74)

Note that in the above equations, denotes the set of all particles,the set of all
interacting particle-pairs, andl the set of particle-pairs that have had their bonds broke
in the last time step. The work done by the applied intrinsic frictional force (i.e., effecti
heat) is given by

En(t) _/ > Mafxj dt, (75)

ijeF

and is computed using

At At
Eh(t+ 2> _E, <t . ) PO A Os 0+ Y a5, (78)

ijeF ueF

where

— . At -+
5 (0 = At <xg(t) - R )),
(77)
S‘ﬁ‘(t) = At (XT(t) + EXT(I+))
! [ 4 i s

andF denotes the set of interacting particle-pairs. Assuming that heat generated by ac
tic vibrations is negligible compared to heat generated by the work done against frict
between particlest;, represents the effective heat generated by the rubbing of particl
against each other.

The external work done must also be computed and represents the energy added t
system. For instance, for the numerical experiment described in Fig 6, energy is adde
the system in order to move rigid driving plates at a constant rate and to maintain a cons
normal stress on the edges. In this case, the external work done is given by

Wext = We';'(t + W, ext + We_xt’ (78)
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7

Rigid driving
plate

——-—-T nz

FIG. 6. lllustration of a two-dimensional frictional experiment where the two blocks are composgdkat,
particles. A normal stress, is maintained in the solid and a shear stresg applied on the driving plate such
that the driving velocity of the edges remains constant.

whereW/,is the component of external work done to maintain a constant horizontal veloc
of the driving plates, an®V;\, and W, are respectively the work on the upper and lower
plates required to maintain a constant normal stress. The Wgfkdone to maintain the
constant driving velocities on the plates is

W&(t + %) = We*it(t - %) +At Y (Firetih e, (79)

i eEdges

wheree, ande, denote the unit vectors in theandz directions. The external work done
on the upper or lower edge to maintain a given constant normal stfésgiven by

W+

At
ext t+ ?

At\ At . At
= W;;t(t —~ 2) +% Y. (AFn+Fi-e) Kxi () — %t ))-ez}

i eUpper edge

At . At
+ > Z (AFy +Fi &) |:(Xi ®+ Txi (t+)> ‘ ez:| )

i eUpper edge

_ At
\Next(t + 7)
=W_

At At . JA\ S
ext(t - 2> + > Z (—AFnz +Fi- ez) {(Xi (t) — in (t ))'ez]

ieLower edge

At . At
+5 Z (—AF, +Fi - &) |:<Xi ®+ R (t+))'€‘z}

ieLower edge

(80)

where

1,— —
AFy, = AFp, = Fn — 5(le —F,) e, (81)
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or
AFy =Fh—Fy - &, (82)

for the upper and lower edges=£ 1 andi =2, respectively). In the above equatiofRs
denotes the normal force corresponding to a normal strgsEquations (81) and (82)
decribe different ways to maintain a contant pressure. In Eq. (81) the same normal forc
applied on the lower and upper edges whereas in Eq. (82) the two edges are indepen
which is more appropriate for simulating normal stress in the brittle crust.

InEq. (80),AF, +F; - e; represents the normal force applied to the upper or lower ed(
(i=1 ori =2, respectively)ny is the number of particles along the edge, &adis the
average value of the force on one particle for a row of particles=at; (z; for the upper
edge ana, for the lower edge, as shown in Fig. 6),

_ 1 M
Fz = n Z Fiz) (83)
)

whereF; ) is the total force acting on the particle located at mwnd columnj.

Fn in model units is assumed to produce the same strain in the elastic model as a no
stress of, in pascal units in a medium having typical values of elastic constants for t
crust (i.e., corresponding to a compressional wave swged3\/§ km/s and a density of
the mediump = 3000 kg/n3).

UNIT CONVERSION

Scaling between systems of units is required in order to compare results obtained witt
model in arbitrary model units with real data or laboratory observations. In the following \
consider two unit systems: MKS units denoted by prifharfd the model units (no prime).
The normal force arising from a relative normal displacement isf F, = ku, wherek is
the spring constant (or the stiffness between two particles). Hence,

F, kv
- ) 84
Fn ku (84)
Since strainsdy) are proportional to displacements divided by distanceve have
F,  Kenrj
_n__""o 85
Fn kenro ( )

The strains in the model equal the strains in the real systee,s@, , which leads to

Fr;kro
krg

Fn= (86)

In the 2D lattice solid, the stress in the MKS units systew{ is given by

/7
Fn
—

0

(87)

O—Z/Z’ =
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wherer | is the particle diameter. Using Eqgs. (86) and (87) we obtain
k
Fn = Uz/z/gro- (88)

If we setk =1 in model units, and assuming that we wish to use MKS units to specify tl
normal stress,, andk’ (i.e., F, in Pascals) are in MKS units, Eq. (88) becomes

[of
Fo= oot (89)
wherek’ can be deduced from
3
) (90)

which is given in Mora and Place [16]. Namely, if we make us&/p& %, Eq. (90)
yields

A+ 2u 4 4 43
_Atea 4 2_ % ipvz. (91)

3 ﬁ_p D3\/§: 9 p

Consequently, to maintain a normal stregén Pascals, the normal fordg, in model units
that must be applied is

k/

9 o,
Fn=—=——-ro. 92
n 4\/§,0V§ 0 ( )
TOTAL ENERGY AND HEAT ERROR TERM
The normalised total energy, given by
Ex () + Ep(t) + Ef () + En(t) + Wex(t
Et) = k(1) + Ep(t) + E¢ (1) + En(t) + Wexd(t) 93)

Ek (to) + Ep(to) + E+ (to) + En(to) + Wex(to)’

is computed. This value should remain close to unity if the scheme is accurate. The ¢
servation of energy is not indicative of the validity of the results, but failure to conser
energy would indicate a problem in the numerical approach. For example, as the time st
increased, the numerical energy varies substantially with time due to increasing inaccu
of the finite difference scheme in representing the time derivative. Similarly, failure to moc
friction precisely during the numerical integration procedure results in time variation in t
computed numerical energy.

The computation of heat using Eq. (76) allows “negative heat” to be generated if 1
tangential velocityx{ changes sign during a half time step (i.e., bouncing pairs). If th
simple iterative approach described previously is used, a negative value for heat mean:
the frictional forces are not correct. In the Cundall approach to computing friction, the wc
done by intrinsic friction also includes energy absorbed or restored in the shear deforma
of the particles. Hence, “negative heat” is not indicative of a fundamental error within t
method (i.e., it is self-consistent). However, negative heat generation can indicate an ¢
in dynamics relative to the desired result: when two particles are locked by static frictic
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part of the energy is stored as shear deformation of the particle. If the frictional forces
underestimated or overestimated, the particle will restore or release some of the en
stored in shear deformation. This results in tangential oscillation of the particle around
point of contact. An excessive “negative” heat generation (typically, the energy relea
from the particle shear deformation is one order of magnitude less than the total w
done by intrinsic friction using a shear stiffneks= k) would indicate that particles are
unphysically oscillating due to incorrect frictional forces. These oscillations can also ca
non-physical changes in frictional behaviour (i.e., changing between static and dyna
frictional behaviour).

However, a positive value for heat may or may not be correct. For example, ifthe tanger
velocity changes in sign (i.e., bouncing particle), a positive value of heat may be incort
(the frictional force may oppose the direction of slip at the end of the time step but will n
oppose the direction of slip during the entire time step since the slip is reversing during
time step).

By summing the “negative heat” generatégj, (), a lower bond of the component of the
energy restored to the system by applying a frictional force which is too large or too s
can be evaluated:

En

h | 94
En — E (94)

(;‘h:‘

In the lattice solid model, the work done by intrinsic friction (i.e., effective heat) fo
bouncing particle-pairs can have a negative value while the correct dynamics is simulate:
order to compute the “true” or effective heat generated during a simulation, the effective t
for bouncing particles is computed using Eq. (76), where the effective frictional fafcmxe
set to the true value of the frictional acceleration ('a#.is respectively equal tz”aqu (T)and
éij (T 4+ A1’) before and after the tangential velocity passes through zero). Consequet
for the lattice solid approach, the negative heat measured by Eq. (94) is an overestima
the error. With the lattice solid approach, the negative heat generated by friction betwee
particles, except bouncing particle-pairs, is typically 5 orders of magnitude les&fhan
HenceE,, for the lattice solid approach represents mainly the “negative” heat generatec
bouncing particle pairs. Since bouncing particle-pairs can produce “negative” heat wi
simulating the desired dynamics, potentially overestimates the error in the lattice solic
approach by up to several orders of magnitude.

LIMITATIONS AND FUTURE WORK

Particles in the model represent idealized grains or units of rock. This representa
has limitations, in that particles do not rotate and do not have moments of inertia. Furtt
more frictional forces are applied at the particle centres and not at the particle surfa
To overcome these limitations, particles can be used as the building blocks of grains
alternatively, rotation at the particle scale can be included and friction applied at parti
surfaces as in Wintagt al. [25]. By grouping particles to form unbreakable model grains o
rock, rotation can be simulated and frictional forces applied at the grain surface in the li
of large multi-particle grains. While single particles effectively have infinite shear stiffnes
grains can be deformed when subjected to shear stress. Because grains in the mod
the smallest indivisible unit of the system, unlike those in real rocks, they cannot breal
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Material

FIG.7. Conceptof modeling the interactions between particles and bonds. The space between bonded par
is filled by material and interacts accordingly with other particles.

form smaller grains of rock. In the following examples, grains are composed of only 3 to
particles due to computer limitations. Consequently grains have a high surface roughr
To specify a realistic surface roughness, a possible solution would be to fill the spa
between bonded particles with material and to allow interactions between fill material ¢
particles to be modelled (Fig. 7). The use of particles of different sizes would also all
more realistic surface roughness to be specified, and would reduce the porosity to a r
realistic value (cf. a rock with non-uni-modal grain size). This solution would also enak
random lattices to be specified, and hence, isotropic fracture behavior could be mode
By using particles of different sizes and filling the space between bonded particles, g
shapes and fault surface roughness could be more precisely controlled, thus enabling
realistic geometries to be modelled.

The heat generated during a simulation is defined as the work done by intrinsic frict
between particles. Because attenuation of acoustic vibrations is not modelled, the calcul:
of heat does not take into account heat that would in reality eventually be generatec
acoustic vibrations.

RESULTS

The purpose of the first set of numerical experiments is to show that results obtail
with the model are consistent with our theoretical expectation and with field observatio
These tests consist of (1) verifying that the heat generated during earthquakes (defined :
work done against microscopic intrinsic friction) is in accordance with a simple theoretic
prediction (work done at the macroscopic scale); (2) verifying that the stick—slip friction
behaviour is observed and is similar to other observations.

The purpose of the following numerical experiments is to check the numerical precis
and the validity of the results when an intrinsic friction is specified by verifying that th
heat produced during microscopic slips between particles is the same as a value that w
be theoretically expected from macroscopic slip between the fault surfaces, assuming t
coefficient of friction is equal to the particle intrinsic friction. The normalised total energ
given by Eq. (93) is plotted to verify the precision of the numerical approach.

The numerical experiment (Fig. 8) consists of two homogeneous elastic blocks where
surfaces are essentially flat to within the resolution of the model (i.e., surface height varia
hs=(1- @)ro). Circular conditions are applied along theaxis. The blocks, composed
of 64 x 32 patrticles, are pushed past one another by moving the rigid driving plates ¢
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Elastic-brittle block
: Fault

Rigid driving plate
—vzz

FIG. 8. Two-dimensional experiment involving two elastic blocks composed of 82 particles, where a
constant normal stress of 300 MPa is maintained on the rigid driving plates and a frictional coeffigieaO8
is used. The block surfaces are flat to within the limits of the discretisation (i.e., the roughness is not zero bec
the smoothest surface that can be defined using the lattice solid model is a row of particles).

1

constant rate 0f0.00024/,, (whereV, = \/g usingk =1 andM = 1), while maintaining

a given normal stress, on the rigid driving plates. A “normal stress” of 300 MPa was use
in this numerical experiment, which approximately corresponds to the upper limit of t
normal stress at middepth in the brittle crust. The viscosity of the medium isiset@0064.
The normal stress is computed using a compressional wave spkigd:cﬁ«/é km/s and a
densityp = 3000 kg/n? (cf. Eq. (89)). The breaking separatiop§ay) is set to 11rg, which
can be considered the upper limit for most materials (Mora and Place [16]). Figure 9 sh
the observed macroscopic coefficient of friction of the model fault defined as the ratic
shear to normal stress given by

t Fo(t) —F,(1) - &
iy 2 O _ Fa® —Fa) e

- - , 95
on(t) (le(t) - Fzz(t)) = ( )

wherez; is the shear stress measured on the driving platesogiglthe normal stress.
F, is the average value of the force for a row of particleg &tz (z; for the upper edge
andz, for the lower edge of the lattice). Assuming that energy goes mainly into seisn

3.0
Stick
2.0+
lJ L 1.04
Slip
0 T T T T T T
0 10,000 20,000 30,000

Time ———»

FIG. 9. Plot of the observed coefficient of friction measured on the rigid driving plates showing stick—sl|
cycles.
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FIG. 10. Heat generated using the lattice solid model approach in an example in which the numerical e
in heat remains less than 0.01% and the heat generated is equal to the theoretical value. The staircase appe
of the actual heat is due to the stick—slip movement of the fault.

waves and heat (this is a true assumption, considering the fact that during the experir
no fracturing occurred and there are no transformations of energy other than kinetic
heat), the frictional stress on the fautt,, can be expressed as the sum of the frictiona
stress going into seismic waves (due to surface roughness) and heat (due to intrinsic fric
between particles). Hence, the observed coefficient of friction represents the sum of
surface roughness effect and intrinsic friction between particles. Stick—slip cycles car
seen as the characteristic sawtooth shape observed in laboratory experiments.

Figure 10 shows the “actual heat” (i.e., heat generated when particles rub past one ano
and the “theoretical heat” given by

A A = =
En (t + %) = En (t - ?t) + 2vmrﬁ [(Fu(t) —F5(1) - €], (96)
0

whereV is the driving plate velocity. The theoretical heat represents the heat that would
generated by rubbing two blocks of rock past one another at a constant v&loeityere
the coefficient of friction of the rock ig (Ey, = nwon2LVt, wherel is the length of the
driving plates). In this numerical experiment, the heat generated follows the same tr
as that of the theoretical value, and the error in heat (given by Eq. (94)) remains less 1
0.01%.

The purpose of the next two sets of numerical experiments is to verify that the fricti
of the model fault is equal to the theoretical value for different sets of parameters.

In the first set of numerical experiments, the normal stress was constant (300 MPa)
the frictional coefficient. was varied from 0.1 to 0.9. The effective macroscopic coefficier
of friction (producing heat) is given by

T 97

Mo =K (97)
whereE_’h and E_{h are respectively the average rate of heat actually generated (compute
the work done against intrinsic friction) and heat theoretically generated (given by Eq. (9
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FIG. 11. Observed macroscopic coefficient of friction and effective macroscopic coefficient of friction con
pared to the theoretical valye (dashed line). The minimum observed macroscopic coefficient of friction is nc
zero because the fault roughness is not zero.

The ratio between these two values should be close to unity if the heat generated ren
close to the theoretical value. In this case, the effective macroscopic coefficient of frict
should be equal to the microscopic coefficient of frictiorFigure 11 shows the observed
macroscopic coefficient of frictionu(; ) computed as the average valueqf(Eq. (95)) and
the effective macroscopic coefficient of frictiom, as a function ofc. In these numerical
experiments, the effective coefficient of friction remains approximately equal to the mici
scopic coefficient of friction, the total energy is constant to within an error of 0.1%, an
the error in heat is less than 0.01%.

In the second set of numerical experiments a frictional coeffigieaual to 0.8 and a
normal stress,, ranging from 25 to 400 MPa are used. Figure 12 shows the observed mac
scopic coefficient of frictioni ;) and the effective macroscopic coefficient of frictign, ],
which would theoretically be expected to equal the microscopic coefficient of frigtion

For pressure greater thar250 MPa, the effective macroscopic coefficient of friction —
in Figs. 11 and 12 follows the expected value. However, in Fig. 12 the observed coeffici

2.5

1.59

0 ) 100 200 300 400
Gn ———n

FIG. 12. Observed macroscopic coefficient of friction and effective macroscopic coefficient of friction cor
pared to the theoretical valye(dashed line) as a function of the normal stress.
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Rigid driving
plate

Fault
Elastic-brittle block

FIG. 13. Example of a setup for a numerical friction experiment. The two blocks are pushed by moving t
driving plates at a constant rate. The lattice is made of grains composed of 3 to 10 particles.

of friction tends to be higher than the theoretical prediction, especially at low values of 1
normal stress. This is essentially due to a dynamical effect enhanced by the low nor
pressure and the regularity of the surface roughness where the slip can eventually re
(overshoot effect leading to slip that is more than a simple sliding movement of surfac
and thus, to more heat generated).

NUMERICAL EXPERIMENT

The two-dimensional numerical friction experiment (Fig. 13) consists of two homog
nous elastic blocks separated by a gouge layer. The lattice is composedsofl28arti-
cles. Two regions can be distinguished: the gouge region and the elastic region (outsid
gouge region). The elastic region is unbreakable and hence represents a pure elastic ma
The gouge region is composed of grains which are not bonded mutually. Grains themse
are composed of 3 to 10 particles which are bonded by strong links gjegi—= 1.5rp). The
distribution of grain sizes in the gouge region is inversly proportional to the grain siz
Normal stress is maintained at 150 MPa on the driving plates while the plates are pushec
constant velocity 0f-0.00024/,, whereV, represents the P-wave velocityy= /2 ~ 1.0
for a spring constark =1 and a particle madegl = 1; see also Mora and Place [16]).

STICK-SLIP INSTABILITY

The observed coefficient of friction during the friction experiment, computed usir
Eq. (95), shows the characteristic sawtooth shapes of stick—slip frictional behaviour (Fig.
and a complex distribution of event sizes. The numerical experiment involves a syster
128x 128 particles. The lattice is made of grains composed of 3 to 10 particles, where
grain distribution is homogeneous. The coefficient of frictioa: 0.42, rpeax= 1.5rg inside
a grain, and o= 1.04ro between grains, and a constant normal pressyte 150 MPa
is maintaned at the driving plates.

FAULT GOUGE AND HEAT OF EARTHQUAKES

A long-standing paradox in earthquake studies has been the heat flow para
(Lachenbruch and McGarr [9], Lachenburg and Sass [10]), namely, that the heat f
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FIG. 14. Observed coefficient of friction during a frictional experiment showing stick—slip cycles.

observed along the San Andreas fault is at least five times less than the theoretically
dicted value. With different values of the intrinsic friction from 0.1 to 3.2 and a setup simil
to that specified previously, simulations show that the actual heat due to rubbing betw
particles (Eg. (76)) is up to 10 times less than the theoretical value (Fig. 15). (See also M
and Place [18, 19] for a comprehensive presentation of these and related results w
provide a possible explanation of the heat flow paradox and associated observations.)

During the simulation, slip pulses are sometimes observed that propagate along the
in a manner similar to that observed by Brune and co-workers [3] in stick—slip experime
on foam rubber. However, analysis of the results (Mora and Place [18, 19]) show t
a reduction in normal stress between grain surfaces during slip cannot explain the
heat observed. This suggests that neither the Brune-type local reduction in normal s
(coherent with a slip pulse) nor the Melosh-type incoherent reduction in hormal stre
(“acoustic-fluidisation” model; Melosh [13]), if present, is the dominant cause of he
reduction in the numerical experiments. Rather, the analysis of Mora and Place [18,
showed that the low value of heat is explained by rotation of grains (jostling and rollin
with minimal slip of grain surfaces during slip of the fault, a mechanism which is promot
by the high value of the intrinsic friction (or rounder grains).

This “clean rotation” reduces the amount of slip between surface particles of grains
consequently reduces the heat generated during a macroscopic slip event of the model
Numerical experiments show that when grains are allowed to break down to one part

90 30

75 4 25 4

60 - 20 4

Theoretical heat Theoretical heat

Eh

30 4

Eh

Actual heat Actual heat

15 o

0 40000 80000 120000 0 "7 40000 80000 120000
Time — Time —»

FIG. 15. Actual heat compared to theoretical predictions when (left) a high value of intrinsic friction is ust
(i.e., . =1.7), and when (right) a low value of intrinsic friction is used (i, .+ 0.42).
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FIG. 16. Snapshots of simulations in which fault gouge was generated.

only (irrotational units that only allow slip), a fault develops that is mainly composed of fre
particles (Fig. 16). The lattice is composed of 22828 particles which are the smallest
indivisible units of the system. The valuergf.«is uniformly equal to 105r¢ andu = 0.85.
When a slip event occurs, free particles slip against one another (free particles are unat
rotate since rotation is not modelled in the current version of the lattice solid model). Hen
more heat is generated when grains do not rotate than when rotation of grains is allov
but still less than the theoretical value in some instances (up to 50% less). This is
to a physical bouncing mechanism (similar mechanisms are known to reduce friction
have been studied previously in Pisarenko and Mora [20]) that allows particles to slip
one another while the normal stress is temporally reduced. This result suggests that v
rolling is the dominant low heat mechanism in the numerical experiment, bouncing-ty
mechanisms may superimpose on this effect in a simulation using grouping of partic
This is verified by detailed calculation in Place and Mora [24].

COMPUTATIONAL NEEDS

The system size for simulations was 12828 or 256x 256 particles and is too small to
specify realistic fault systems or rock surface roughness. Computations involving intrin
friction are highly time consuming when fault gouge develops because the nonlinear sys
which must be solved to compute the static frictional acceleration is proportional to t
number of touching particles (Eq. (49)). Therefore, efficient algorithms are required
reduce the computational time.

A typical simulation involving two blocks of 128 64 particles requires approximately
250,000 units of time (witlk =1 andM = 1). In other words, if the time step increment
At is 0.04 (for a precise numerical solution with intrinsic friction), the simulation will
require 50 million time steps (approximately two months of computation on a 1.2 GFlo
computer).

In order to reduce the number of time steps required for a simulation, the time s
incrementAt must be as large as possible for the required precision to be obtained. -
precision factor (given by Eq. (67)) relates to the maximum velocity and the time st
increment where a large time step increment can be used when particle velocities
small (a time step increment of 0.2 is required to obtain results with adequate precis
assuming that the maximum velocity is approximately equal to 1, the P-wave speec
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ro=1,k=1, andM =1). A time step increment of 0.4 may be sufficient for a stable an
accurate numerical integration in much of the run such as during static stress buildup phs
However, a time step increment of 0.04 is typically required to capture discontinuities c
to frictional interactions, precisely compute the frictional forces, and yield an accur:
numerical integration when the system is undergoing a dramatic dynamical event (such
simulated earthquake). An adaptive time step increment has therefore been developet
enables a large time step increment to be used during periods of quiescence of the simul
(i.e., stick phase). The time step increment is chosen as a function of the maximum par
velocity using

At = {max(Aty(t), Mun). Klmar®) > K (98)
Atmax, [X[max(t) < K,
where
1-y)K’
At, () = Ato(.—y) + YAt (t — At), (99)
[X|max(t)
y = {Vlv if |X|ma>.<(t) > [X|max(t — At) (100)
Y2, otherwise

The maximum particle velocity is denoted b¥max and Aty represents the normal time
step incrementAt, = 0.2) that is suitable for wave propagation and “non-violent” dynami
events. The maximum time step incremavtf,.« (typically, Atnax= 0.5) is the largest time
step that is suitable for numerical stability and that can be used where no dynamic e
is occurring. The minimum time step incremefity,;, is the largest time step that can be
used when a “violent” dynamic event occurs (typicalltmi, = 0.04). The constarK is an
average of particle velocity and represents the minimum particle velocity when no dynai
events are occurring. The constdtitis used to scale the time step increment arslused

to control the rate of change of the time step increm&rtandy are chosen such that a
large time step increment will be used when no simulated earthquake events are occu
(i.e., stick phase), and will quickly decrease when a simulated earthquake is initiatec
order to capture changes in frictional behaviour. To capture events triggered by other ev
the time step should also increase slowly once all radiated energy (seismic waves) fror
earthquake has been dissipated.

For example, for small particle velocity (i.€X|max(t) < K’) the time step will approach
Atp. The value oK' istypically chosen as the typical particle velocity when waves propaga
in the solid but no “violent” dynamic event is occurring. A small valug/pfs chosen to
allow the time step increment to rapidly adapt when the particle velocities are increas
during initiation of a slip phase, for instance (typicajly= 0.1 to rapidly capture stick—slip
instabilities). A large value of, will ensure a gradual increase of the time step incremer
when the particle velocities are decreasing (typicalby= 0.9 to capture aftershocks or
main shocks occurring after precursory events). The time step increment is recomp!
after each half time step (specified in Table V) at the middle and at the end of atime s
If at the end of a time step, the calculated time step increment decreases, that is, a \
that was too large was used during the last half time step, then the time step is halved
recomputed using the newly computed time step.

Typically, a variable time step leads to a reduction of approximately 300% in the numli
of time steps compared to a simulation using a constant time step increment of 0.04.
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The solution of the linear system (Eq. (55)) to compute frictional forces is also optimize
The linear system involves a square maWwix of all interacting particle-pairs. A simulation
involving 128x 128 particles may typically have up to 2000 interacting particle-pairs, <
the size of the matri¥ g will be 2000x 2000. Since all elements of the matkixg are zero
except for particle-pairs which interact with one another, only the non-zero elements
stored in memory. This sparse system is solved using an LDU decomposition.

A reduction in computational needs is critical for large scale simulations, where t
model size is limited by the computational time required to compute the frictional force
Unfortunately, model sizes used (1828 and 256« 256) were insufficient to specify
realistic rock surface roughness (e.g., as observed and described by Brown and Schol.
or fault systems. Up to 40% of the time (when a large fault gouge develops) is spent sol\
the linear system to compute the frictional acceleration (even using a highly optimiz
sparse LU solver). Hence the efficiency of the program as a whole depends mostly or
efficiency of the algorithmin solving a “sparse” linear system (see also Place and Mora [2

CONCLUSIONS AND PERSPECTIVES

Incorporation of intrinsic friction into the lattice solid model enables more realistic ar
accurate simulations of the physics of rocks and the dynamics of earthquakes to be perfol
using the lattice solid model.

This is achieved by specifying interactions between model particles in a such way t
no slip is observed between particles when two surfaces are locked by static friction. -
numerical approach is based on a half time step interaction scheme in which the discontir
due to bond breaking is precisely captured. Transition between static and dynamic frictic
behaviour is modelled by introducing intermediate states for particle-pairs undergoing
transition or bouncing against one another. Static frictional forces are computed by resol
a nonlinear system involving all frictional interactions that effectively lock grains at tf
contact point (stop slip between surface particles of grains).

The lattice solid model provides a precise, reliable, and efficient approach which car
used to quantitatively study heat generation and problems of geophysical significance
as the heat flow paradox. Such studies have already provided a comprehensive pos
explanation for this geophysical paradox. By simulating microscopic frictional instabilitie
(the transition between static and dynamic behavior), the model is able to simulate com,
phenomena occurring in large nonlinear dynamical systems, such as precursory phenol
which may occur before a large earthquake. Future studies of such phenomena may prec
clues to the predictability of earthquakes.

APPENDIX: COMPARISON OF DIFFERENT NUMERICAL APPROACHES

The numerical experiment (Fig. 17) consists of two homogeneous elastic blocks wh
a constant normal stress of 1470 MPa (us\g= 33 km/s andp =3000 kg/m) is
maintained on the edges of the lattice and a frictional coeffigiea0.8 is used. The block
surfaces are flat to within the model discretisation.

Several simulations are performed using three different methods: the interative met
(the first simple approach proposed), the Cundall approach applied to the lattice solid mc
and the current lattice solid model approach. The joint stiffri€saised for Cundall's
approach is set to 1.0.
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FIG.17. Two-dimensional experimentinvolving two elastic blocks composed of 82 particles. The block
surfaces are flat to within the limits of the discretisation (i.e., the roughness is not zero because the smoc
surface that can be defined using the present lattice solid model is a row of particles).

Figure 18 shows the observed coefficients of friction for the three methods using
same set of parameters. The observed coefficient of frigtiois given by

() (Fu® —FhL() - &

pi(t) = = , (A.1)
on(t) (le(t) - Fzz(t)) 1€
3
] lterative method
x 2-
Hy N
0 ' 10000 ' 20000 ' 30000
Timg ————
3
Cundall approach
Hy .
o 10000 20000 30000
Time ————
Lattice solid model approach

T T LI ML T L |
0 10000 20000 30000
Timg ———

FIG. 18. Observed coefficient of friction using the iterative method (top), the Cundall approach (middle), a
the lattice solid model approach (bottom). Stick-slip cycles became more regular after the initial events. Ti
initial events are different for each method, with slip seeming to occur more easily for the two first methods.
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wherer; is the shear stress measured on the driving plateis,the normal stress, arr_ci
is given by Eq. (83).

The time step incrementis allowed to range from 0.1 to 0.2 except in the Cundall approz
where a fixed time step increment of 0.1 is used in accordance with Eq. (38). Note that fr
Eq. (38), avalue oAt small enough thaht = % < 0.14 must be chosen. However, a value
of At =0.1 was found to be small enough to ensure numerical stability, considering the f
that the user-defined factoin Eq. (38) relates to the number of simultaneous contacts th
a particle can have. Since a particle interacts with a maximum of two unbonded partic
in this numerical experiment, one can use a valuecfgreater than that possible in 3D
simulations ¢~ 0.2 in this case).

The plot of the maximum particle velocity during a slip event using the iterative meth
(Fig. 19) highlights an instability which may occur before a slip. This instability is due t
oscillation of particles between static and dynamic frictional behaviour before a slip.

In all three methods, the total energy remains constant to within 1% during the simulati
Total energy alone cannot be used to check the physical validity of the numerical appro
considering, for example, the fact that energy added due to a wrong value of frictional for
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FIG. 19. Maximum particle velocity using the iterative method (top), the Cundall approach (middle), ar
the lattice solid model approach (bottom). A numerical instability appears when the first method is used
to particles oscillating between static and dynamic frictional behaviour. The dynamic behaviour in the Cunt
approach seems to be different from that of the other two methods. This is presumably because particles in
frictional contact in these methods are seen as having high shear stiffness whereas th¢;usé of Cundall’s
method effectively introduces a shear stiffness at the particle scale.
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FIG.20. Heatgenerated (fine solid line) compared to the theoretical value (bold solid line) using the iterat
method (top left), the Cundall approach (top right), and the lattice solid model approach (bottom). The numel
error in the heat generated (dashed line) is magnified by a factor of 2. The theoretical value is computed a
work done to move the driving plates, assuming that the horizontal stress on the ptatesiis,.

will not be detected (i.e., a wrong heat is balanced by an error in kinetic energy). Howe:
the heat energy should always be positive for the iterative approach and the lattice <
model, so any negative heat in the calculations provides a measure of the physical val
(that is, the frictional force must oppose the direction of slip). For the Cundall approa
this term relates to the energy restored by the particle shear stiffness and is indicative ¢
error only if this term is excessively high. Such a measure is termed the numericalerro
in the heat and is computed using Eqg. (94).

Figure 20 shows the actual heat, the theoretical heat, and the numerical error in heat.
Cundall approach shows an error in the heat of 20%, which is essentially due to use
finite joint stiffnessK s and represents the energy absorbed or restored by the particle st
elasticity when the contact is static.

Even though the iterative method produces approximately correct results, itis very un
ble, especially when a complex fault is present. When multiple interactions occur betw:
particle-pairs, the algorithm does not converge, in which case the errorin energy may ext
100%.

As shown previously, the Cundall approach is stable, but the value of the joint stiKgess
plays an important role in the static—dynamic behaviour. The joint stiffkggepresents
the effective shear rigidity of particles in static frictional contact when subjected to she
forces. An infinite value oKg will cause particles to become rigid (like particles in the
lattice solid model). Hence, when large valuegfare used with the Cundall approach,
the results should become similar to those obtained with the lattice solid model.
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FIG. 21. Plot of the fault friction using the lattice solid model approach (solid line) and the Cundall approa
for a value ofKs = 2.0 (dotted line) Ks = 10.0 (dashed line), ands = 100.0 (fine dashed line).

The purpose of the following humerical experiments is to determine the vakigtbfat
should be used to obtain results similar to those obtained with the lattice solid model,
the computational cost. These experiments used the setup described in Fig. 17. Diffe
values of the joint stiffnesks ranging from 0.1 to 100 are used and the time step increme
is chosen according to Eq. (38). The computational cost (CPU time) and accuracy of
results are compared with the results obtained using the lattice solid model.

As the value of the joint stiffness becomes larger, results obtained using the Cun
approach become more like those obtained with the lattice solid model approach (Fig.
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FIG. 22. Precision factor of the Cundall approach plotted as a function of the joint stiffagss
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FIG.23. Comparison between the Cundall approach and the lattice solid model approach. The computati
time is plotted as a function of the joint stiffneks.

Figure 22 shows the precision factor between the Cundall approach and the lattice <
model approach computed as

P, — (8h)CundaII7 (A2)
(en)Lsm

where the error in the heat energy using the lattice solid mo@g) sw) is chosen as
the reference and is equal to 0.01% for this numerical experiment. This precision fa
represents the amount of slip that occurs when particles are locked by static friction (cat
by the shear deformation of the particle) and should converge to 1 as the particle becc
more rigid. Figure 23 shows the CPU time using the Cundall approach for different vall
of K5 compared with our method.

For a value ofKg greater than 100, where the precision factor is less than 200 (i.e., 1
heat generated when the contact is static is less than 2%), the frictional stress bec
almost equal to the stress computed using the lattice solid model (Fig. 21). In this case
a simple fault) the Cundall approach is approximately 40 times slower. If a more comp
fault is specified, the error becomes larger, and the valu€;atquired to obtain similar
results becomes larger. Consequently, when “rigid” shear constraint is used, the Cur
approach becomes excessively costly.
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